Scientists use Vesselucida 360 to quantify brain vasculature in mTBI model

It is not uncommon for war veterans returning home from war-zones like Iraq and Afghanistan to suffer from blast-induced traumatic brain injuries (TBI). In these situations, the most common types of blasts are lower level blasts, the kind that produce mild TBIs (mTBI). Though the effects of a mTBI aren’t visible from the outside, scientists say the blood vessels inside the brain are deeply altered.

In their study of a mouse model of mTBI that mimics the blast exposure associated with human mild TBI, a research team, that includes MBF Bioscience Scientific Director Dr. Susan Tappan, say that low-level blast exposure disrupts the way cells interact with each other within the brain’s neurovascular unit.

Fig:1 Chronic vascular pathology in blast-exposed rats revealed by micro-CT scanning. Two control and two blast-exposed rats were transcardially perfused with the Brite Vu contrast agent at 10 months after blast exposure. Brains were scanned at a resolution of 7.5 μm using equispaced angles of view around 360°, and 3D reconstructions were prepared with Bruker’s CTVox 3D visualization software. a-d MIP images of volume-rendered brain vasculature from two control (a, b) and two blast-exposed (c, d) rats revealed diffuse thinning of the brain vasculature in the blast-exposed rats. Scale bar, 2 mm. e-h Trace sagittal reconstructions used for the automated quantitation from control (e-f) and blastexposed rats (g-h) o-p Higher magnification views of the regions outlined by the boxes in panels (f) and (h). Scale bars, 1 mm for (e-h), and 0.6mm for (o-p). i-n Reconstructions of coronal optical sections from the brains of control (i, k) and blast-exposed (j, l) animals. Panels (i) and (j) correspond approximately to coordinates interaural 12.24–9.48 mm and panels (k) and (l) correspond approximately to coordinates interaural 6.94–3.24 mm. Lateral views of (i) and (j) are shown in (m) and (n), respectively. Vessels were color coded to allow visualization of individual vessels automatically traced by the Vesselucida 360 software. Note the general loss of radial organization in the blast-exposed shown in panel (j). Scale bar, 1 mm for (i-n)

Aiming to mimic an event often experienced by soldiers and military personnel in war-torn regions, the scientists exposed rats to a series of three blasts — one blast per day, over three consecutive days. Though the rats developed behaviors typical to chronic PTSD, their neuronal pathology, at least at the light and electron microscopy levels remained unchanged, according to the study. However, when the researchers examined the rat brains on a vascular level, they found evidence of chronic damage.

Continue reading “Scientists use Vesselucida 360 to quantify brain vasculature in mTBI model” »

Researchers cited MBF Bioscience systems in 24 papers between 1/4/2019 and 1/18/2019

Stereo Investigator:

Branch, A., Monasterio, A., Blair, G., Knierim, J. J., Gallagher, M., & Haberman, R. P. (2019). Aged rats with preserved memory dynamically recruit hippocampal inhibition in a local/global cue mismatch environment. Neurobiology of Aging. doi: https://doi.org/10.1016/j.neurobiolaging.2018.12.015.

Chung, Y., Buechel, B. D., Sunwoo, W., Wagner, J. D., & Delgutte, B. (2019). Neural ITD Sensitivity and Temporal Coding with Cochlear Implants in an Animal Model of Early-Onset Deafness. Journal of the Association for Research in Otolaryngology. doi: 10.1007/s10162-018-00708-w.

Ganeshan, V., Skladnev, N. V., Kim, J. Y., Mitrofanis, J., Stone, J., & Johnstone, D. M. (2019). Pre-conditioning with Remote Photobiomodulation Modulates the Brain Transcriptome and Protects Against MPTP Insult in Mice. Neuroscience, 400, 85-97. doi: https://doi.org/10.1016/j.neuroscience.2018.12.050.

Gao, Ruixuan, Shoh M. Asano, Srigokul Upadhyayula, Igor Pisarev, Daniel E. Milkie, Tsung-Li Liu, Ved Singh, et al. Cortical Column and Whole-Brain Imaging with Molecular Contrast and Nanoscale Resolution. Science 363, no. 6424 (January 18, 2019): eaau8302. doi: https://doi.org/10.1126/science.aau8302. Continue reading “Researchers cited MBF Bioscience systems in 24 papers between 1/4/2019 and 1/18/2019” »

MBF Bioscience research team contributes novel dendritic spine analysis in study published in Science

Combination of new microscopy and expansion tissue preparation methods facilitate better and faster analysis of subcellular neural elements.

Today, the journal Science published a paper authored by a research team led by Dr. Ed Boyden of MIT and Nobel Prize recipient Dr. Eric Betzig of Janelia Research Campus. Among the authors are MBF Bioscience Scientific Director Dr. Susan Tappan and Senior Software Engineer Alfredo Rodriguez. In the paper, the researchers introduce new analyses for neural circuits at nanoscale resolutions.

Combining microscopy methods that create high resolution 3D images from whole brains and tissue that have been made physically larger, the researchers imaged a mouse cortex and fruit fly brain in their study “Cortical column and whole-brain imaging of neural circuits with molecular contrast and nanoscale resolution (Gao et al, 2019).”

By creating enhanced processing and analysis tools in MBF Bioscience’s Stereo Investigator and Neurolucida 360 software, Dr. Tappan and Mr. Rodriguez analyzed these images to obtain comprehensive morphometrics of delicate dendritic spines at a greater accuracy than ever before.

GAO ET AL./SCIENCE 2019

“We combined expansion microscopy and lattice light sheet microscopy (ExLLSM) to image the nanoscale spatial relationships between proteins across the thickness of the mouse cortex or the entire Drosophila brain, including synaptic proteins at dendritic spines, myelination along axons, and presynaptic densities at dopaminergic neurons in every fly neuropil domain.” (Gao et al, 2019)

While several forms of microscopy exist that have the ability to image subcellular neural elements, scientists say that each of these methods is lacking in one way or another. According to the paper, the combination of expansion microscopy with lattice-light sheet microscopy gives the most effective results, while considerably decreasing the time spent carrying out the experiment.

“I believe this type of imaging represents a major milestone in terms of the accuracy that can be achieved in dendritic spine morphometry from light microscopy,” Mr. Rodriguez said.

Continue reading “MBF Bioscience research team contributes novel dendritic spine analysis in study published in Science” »

MBF Bioscience receives NIH funding to support innovative research program on the peripheral nervous system

FOR IMMEDIATE RELEASE

MBF Bioscience Williston, VT – January 9, 2019 – MBF Bioscience is pleased to announce our participation in the Stimulating Peripheral Activity to Relieve Conditions (SPARC) program. Funded by the National Institutes of Health (NIH), this extensive research initiative is a vast collaborative effort, which aims to deepen the understanding of how the peripheral nervous system impacts internal organ function.

“We are honored to be working in collaboration with over 40 research teams in the United States and around the world who are making revolutionary discoveries about how the network of nerves located outside the brain and spinal cord affect organs such as the heart, stomach, and bladder, and what role these nerves play in diseases like hypertension and type II diabetes as well as gastrointestinal and inflammatory disorders,” says Jack Glaser, President of MBF Bioscience.

To facilitate this important research, MBF Bioscience will provide the collaborating research scientists with both software and support. Specifically, we will provide image segmentation tools developed to handle large and diverse amounts of scientific image data. Software applications such as Neurolucida 360®, Tissue Mapper™ and Tissue Maker™ will enable researchers to image and analyze nerves, tissues, and entire organs in 2D and 3D.

“Representing the innervation patterns accurately and robustly is an essential contribution to the generation of representative models that can be used for simulations.  We are working with our partners at the University of Auckland, under the direction of Professor Peter Hunter, to create these models for each organ system that will be an enduring resource for scientists for years to come,” says Susan Tappan, Scientific Director at MBF Bioscience.

Researchers involved in the SPARC program are making important advances in health and medicine, which may lead to the development of new therapies for managing an array of illnesses and disorders. Some examples of research areas include subcutaneous nerve stimulation for arrhythmia control, sensory neuromodulation of the esophagus, and mapping of the neural circuitry of bone marrow. We are thrilled about this opportunity to work in partnership with such an impressive array of research teams on this ground-breaking project.

About MBF Bioscience
MBF Bioscience creates quantitative imaging and visualization software for stereology, neuron reconstruction, vascular analysis, C. elegans behavior analysis, and medical education—integrated with the world’s leading microscope systems—to empower research. Our development team and staff scientists are actively engaged with leading bioscience researchers, and constantly work to refine our products based on state-of-the-art scientific advances.

Founded as MicroBrightField, Inc. in 1988, we changed our name to MBF Bioscience in 2005 to reflect the expansion of our products and services to new microscopy techniques in all fields of biological research and education. While we continue to specialize in neuroscience research, our products are also used extensively in pulmonary, cardiac, kidney, cancer, stem cell, and toxicology research.

Our commitment to innovative products and unrivaled customer support has gained high praise from distinguished scientists all over the world and resulted in MBF expanding into a global business with offices in North America, Europe, Japan, and China. Our flagship products, Stereo Investigator® and Neurolucida®, are the most widely-used analysis systems of their kind.

About SPARC

Stimulating Peripheral Activity to Relieve Conditions (SPARC) is a National Institutes of Health (NIH) program that focuses on understanding peripheral nerves — nerves that connect the brain and spinal cord to the rest of the body — and how their electrical signals control internal organ function. Methods and medical devices that modulate these nerve signals are a potentially powerful way to treat many diseases and conditions, such as hypertension, heart failure, gastrointestinal disorders, type II diabetes, inflammatory disorders, and more.

Researchers cited MBF Bioscience systems in 9 papers between 12/14/2018 and 12/21/2018

Stereo Investigator:

Kumar, A. J., Motta-Teixeira, L. C., Takada, S. H., Lee, V. Y., Machado-Nils, A. V., Xavier, G. F., & Nogueira, M. I. (2018). Behavioral, cognitive and histological changes following neonatal anoxia: male and female rats’ differences at adolescent age. International Journal of Developmental Neuroscience. doi: https://doi.org/10.1016/j.ijdevneu.2018.12.002.

Martínez Cerdeño, V., Hong, T., Amina, S., Lechpammer, M., Ariza, J., Tassone, F., . . . Hagerman, R. (2018). Microglial cell activation and senescence are characteristic of the pathology FXTAS. Movement Disorders, 0(0). doi: 10.1002/mds.27553.

Osipovitch, M., Asenjo Martinez, A., Mariani, J. N., Cornwell, A., Dhaliwal, S., Zou, L., . . . Goldman, S. A. (2018). Human ESC-Derived Chimeric Mouse Models of Huntington’s Disease Reveal Cell-Intrinsic Defects in Glial Progenitor Cell Differentiation. Cell Stem Cell. doi: https://doi.org/10.1016/j.stem.2018.11.010.

Neurolucida:

Chaaya, N., Jacques, A., Belmer, A., Richard, D. J., Bartlett, S. E., Battle, A. R., & Johnson, L. R. (2018). Localization of Contextual and Context Removed Auditory Fear Memory within the Basolateral Amygdala Complex. Neuroscience. doi: https://doi.org/10.1016/j.neuroscience.2018.12.004.

Eastwood, B. S., Hooks, B. M., Paletzki, R. F., O’Connor, N. J., Glaser, J. R., & Gerfen, C. R. (2018). Whole Mouse Brain Reconstruction and Registration to a Reference Atlas with Standard Histochemical Processing of Coronal Sections. Journal of Comparative Neurology, 0(ja), e24602. doi: 10.1002/cne.24602.  Continue reading “Researchers cited MBF Bioscience systems in 9 papers between 12/14/2018 and 12/21/2018” »

Researchers cited MBF Bioscience systems in 14 papers between 12/7/2018 and 12/14/2018

Stereo Investigator:

Aldehri, M., Temel, Y., Jahanshahi, A., & Hescham, S. (2018). Fornix deep brain stimulation induces reduction of hippocampal synaptophysin levels. Journal of Chemical Neuroanatomy. doi: https://doi.org/10.1016/j.jchemneu.2018.12.001.

Carrica, L., Li, L., Newville, J., Kenton, J., Gustus, K., Brigman, J., & Cunningham, L. A. (2019). Genetic inactivation of hypoxia inducible factor 1-alpha (HIF-1α) in adult hippocampal progenitors impairs neurogenesis and pattern discrimination learning. Neurobiology of Learning and Memory, 157, 79-85. doi: https://doi.org/10.1016/j.nlm.2018.12.002.

Fowke, T. M., Galinsky, R., Davidson, J. O., Wassink, G., Karunasinghe, R. N., Prasad, J. D., . . . Dean, J. M. (2018). Loss of interneurons and disruption of perineuronal nets in the cerebral cortex following hypoxia-ischaemia in near-term fetal sheep. Scientific Reports, 8(1), 17686. doi: 10.1038/s41598-018-36083-y.

Gibson, E. M., Nagaraja, S., Ocampo, A., Tam, L. T., Wood, L. S., Pallegar, P. N., . . . Monje, M. (2018). Methotrexate Chemotherapy Induces Persistent Tri-glial Dysregulation that Underlies Chemotherapy-Related Cognitive Impairment. Cell. doi: https://doi.org/10.1016/j.cell.2018.10.049. Continue reading “Researchers cited MBF Bioscience systems in 14 papers between 12/7/2018 and 12/14/2018” »

Researchers cited MBF Bioscience systems in 16 papers between 11/26/2018 and 12/7/2018

Stereo Investigator

Beldick, S. R., Hong, J., Altamentova, S., Khazaei, M., Hundal, A., Zavvarian, M.-M., . . . Fehlings, M. G. (2018). Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. Plos one, 13(11). doi: 10.1371/journal.pone.0208105.

Guimarães, M. R., Soares, A. R., Cunha, A. M., Esteves, M., Borges, S., Magalhães, R., . . . Leite-Almeida, H. (2018). Evidence for lack of direct causality between pain and affective disturbances in a rat peripheral neuropathy model. Genes, Brain and Behavior, 0(ja), e12542. doi: 10.1111/gbb.12542.

Killoran, K. E., Kropp, L. E., Lindrose, A. R., Curtis, H. E., Cook, D., & Mitre, E. (2018). Rush desensitization with a single antigen induces subclinical activation of mast cells and protects against bystander challenge in dually sensitized mice. Clinical and Experimental Allergy, 0(ja). doi: 10.1111/cea.13323.

Korkmaz, O. T., Ay, H., Aytan, N., Carreras, I., Kowall, N. W., Dedeoglu, A., & Tuncel, N. (2018). Vasoactive Intestinal Peptide Decreases β-Amyloid Accumulation and Prevents Brain Atrophy in the 5xFAD Mouse Model of Alzheimer’s Disease. Journal of Molecular Neuroscience. doi: 10.1007/s12031-018-1226-8. Continue reading “Researchers cited MBF Bioscience systems in 16 papers between 11/26/2018 and 12/7/2018” »

Researchers cited MBF Bioscience systems in 11 papers between 11/3/2018 and 11/26/2018

Stereo Investigator

Buchman, A. S., Leurgans, S. E., VanderHorst, V. G. J. M., Nag, S., Schneider, J. A., & Bennett, D. A. (2018). Spinal motor neurons and motor function in older adults. Journal of Neurology. doi: 10.1007/s00415-018-9118-y.

Chew, C., Kiley, B. J., & Sengelaub, D. R. (2018). Neuroprotective effects on the morphology of somatic motoneurons following the death of neighboring motoneurons: A role for microglia? Developmental Neurobiology, 0(ja). doi: 10.1002/dneu.22652.

Karasawa, M., Yokouchi, K., Kawagishi, K., Moriizumi, T., & Fukushima, N. (2018). Effects of various lengths of hypoglossal nerve resection on motoneuron survival. Journal of Clinical Neuroscience. doi: https://doi.org/10.1016/j.jocn.2018.11.020.

Khattak, S., Gupta, N., Zhou, X., Pires, L., Wilson, B. C., & Yucel, Y. (2018). Non-invasive dynamic assessment of conjunctival melanomas using photoacoustic imaging. Experimental Eye Research. doi: https://doi.org/10.1016/j.exer.2018.11.014. Continue reading “Researchers cited MBF Bioscience systems in 11 papers between 11/3/2018 and 11/26/2018” »

Researchers cited MBF Bioscience systems in 26 papers between 10/19/2018 and 11/2/2018

Stereo Investigator

Castillo-Ruiz, A., Mosley, M., Jacobs, A. J., Hoffiz, Y. C., & Forger, N. G. (2018). Birth delivery mode alters perinatal cell death in the mouse brain. Proceedings of the National Academy of Sciences. doi: https://doi.org/10.1073/pnas.1811962115.

Chen, Y.-H., Lee, H.-J., Lee, M. T., Wu, Y.-T., Lee, Y.-H., Hwang, L.-L., . . . Chiou, L.-C. (2018). Median nerve stimulation induces analgesia via orexin-initiated endocannabinoid disinhibition in the periaqueductal gray. Proceedings of the National Academy of Sciences. doi: https://doi.org/10.1073/pnas.1807991115.

Garcia-Miralles, M., Yusof, N. A. B. M., Tan, J. Y., Radulescu, C. I., Sidik, H., Tan, L. J., . . . Pouladi, M. A. (2018). Laquinimod Treatment Improves Myelination Deficits at the Transcriptional and Ultrastructural Levels in the YAC128 Mouse Model of Huntington Disease. Molecular Neurobiology. doi: 10.1007/s12035-018-1393-1.

Illouz, T., Madar, R., Biragyn, A., & Okun, E. (2018). Restoring microglial and astroglial homeostasis using DNA immunization in a Down Syndrome mouse model. Brain, Behavior, and Immunity. doi: https://doi.org/10.1016/j.bbi.2018.10.004. Continue reading “Researchers cited MBF Bioscience systems in 26 papers between 10/19/2018 and 11/2/2018” »

Huron Digital Pathology and MBF Bioscience Partner to Enable Large-scale, Repeatable Whole Slide Imaging Workflows for Life Science Research

MBF Bioscience now offers customized models of Huron Digital Pathology’s TissueScope™, a line of whole slide scanners, and supports TissueScope images across its range of analysis software.

October 23, 2018 – Huron Digital Pathology and MBF Bioscience are proud to announce their partnership to offer customized models of Huron’s TissueScope whole slide scanners integrated with MBF’s Stereo Investigator® – Whole Slide Edition, NeuroInfo®, Biolucida®, and BrainMaker® software. The partnership gives researchers new tools to visualize and analyze tissue specimens throughout entire organs, large and small, at high-resolution.

“Combining our analysis software with Huron’s whole slide scanners means that researchers can get the most advanced systems for large-scale, repeatable whole slide imaging workflows,” says Jack Glaser, President of MBF Bioscience. “We are pleased to partner with Huron Digital Pathology to provide Huron/MBF whole slide research systems. As the recognized leader in the fields of stereology, brain mapping, and neuron tracing, we are proud to offer systems with such a distinguished company as Huron. This partnership will now allow researchers to effectively work with microscopic specimens that range in size from mice brains to human brains. It is invaluable for researchers working with large brain specimens, especially those investigating the microscopic intricacies of the human brain.”

“By partnering with MBF Bioscience, our goal is to help accelerate life science research,” says Patrick Myles, CEO of Huron Digital Pathology. “Being able to scan any size tissue and then easily manage, visualize, and quantify the data opens up amazing new possibilities for scientific research and exploration.”

The partnership enables Stereo Investigator, NeuroInfo, Biolucida, and BrainMaker software to efficiently provide quantitative analysis workflows for large sets of slides from both individual tissue sections and series of tissue sections. Stereo Investigator – Whole Slide Edition offers analyses for counting and measuring morphological aspects relevant to disease state characterization. BrainMaker and NeuroInfo offer full-resolution section alignment and brain mapping. Biolucida offers slide management and slide access for viewing and analysis at unprecedented speeds from any web-enabled device. The customized versions of TissueScope scanners are available for purchase from MBF Bioscience.

Continue reading “Huron Digital Pathology and MBF Bioscience Partner to Enable Large-scale, Repeatable Whole Slide Imaging Workflows for Life Science Research” »